# For example how will a CI be used to support hypothesis testing in a healthcare scenario.

*For example, Ralph is a healthcare administration leader who is interested in evaluating whether the mean patient satisfaction scores for his hospital are significantly different from 87 at the .05 level. He gathers a sample of 100 observations and finds that the sample mean is 83 and the standard deviation is 5. Using a t-distribution, he generates a two-sided confidence interval (CI) of 83 +/- 1.984217 *5/sqrt(100). The 95% CI is then (82.007, 83.992). If repeated intervals were conducted identically, 95% should contain the population mean. The two-sided hypothesis test can be formulated and tested just with this interval. Ho: Mu = 87, Ha: Mu<>87. Alpha = .05. If he assumes normality and that population standard deviation is unknown, he selects the t-distribution. After constructing a 95% CI, he notes that 87 is not in the interval, so he can reject the null hypothesis that the mean satisfaction rates are 87. In fact, he has an evidence-based analysis to suggest that the mean satisfaction rates are not equal to (less than) 87.*

For example how will a CI be used to support hypothesis testing in a healthcare scenario.